Preprojective Representations of Valued Quivers and Reduced Words in the Weyl Group of a Kac-moody Algebra

نویسنده

  • MARK KLEINER
چکیده

This paper studies connections between the preprojective representations of a valued quiver, the (+)-admissible sequences of vertices, and the Weyl group by associating to each preprojective representation a canonical (+)-admissible sequence. A (+)-admissible sequence is the canonical sequence of some preprojective representation if and only if the product of simple reflections associated to the vertices of the sequence is a reduced word in the Weyl group. As a consequence, for any Coxeter element of the Weyl group associated to an indecomposable symmetrizable generalized Cartan matrix, the group is infinite if and only if the powers of the element are reduced words. The latter strengthens known results of Howlett, Fomin-Zelevinsky, and the authors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6 Generalized Kac - Moody Lie Algebras and Product Quivers

We construct the entire generalized Kac-Moody Lie algebra as a quotient of the positive part of another generalized Kac-Moody Lie algebra. The positive part of a generalized Kac-Moody Lie algebra can be constructed from representations of quivers using Ringel's Hall algebra construction. Thus we give a direct realization of the entire generalized Kac-Moody Lie algebra. This idea arises from the...

متن کامل

Lecture 16: Representations of Quivers

Now we proceed to study representations of quivers. We start by recalling some basic definitions and constructions such as the path algebra and indecomposable representations. Then we state a theorem of Kac that describes the dimensions, where the indecomposable representations occur as well as the number of parameters needed to describe their isomorphism classes. We will prove the Kac theorem ...

متن کامل

A Realization of Quantum Groups via Product Valued Quivers

Let → Γ be a valued quiver. Let C be the symmetrizable generalized Cartan matrix associated to → Γ. We show that the whole quantum group associated to C can be realized from the category of the representations of the product valued quiver → Γ. This method can be used to realize the whole generalized Kac-Moody Lie algebra associated to C, as discussed in [LL].

متن کامل

Dual graded graphs for Kac - Moody algebras Extended

Motivated by affine Schubert calculus, we construct a family of dual graded graphs (Γs,Γw) for an arbitrary Kac-Moody algebra g. The graded graphs have the Weyl group W of g as vertex set and are labeled versions of the strong and weak orders of W respectively. Using a construction of Lusztig for quivers with an admissible automorphism, we define folded insertion for a Kac-Moody algebra and obt...

متن کامل

Dual Graded Graphs for Kac-moody Algebras

Motivated by affine Schubert calculus, we construct a family of dual graded graphs (Γs,Γw) for an arbitrary Kac-Moody algebra g. The graded graphs have the Weyl group W of g as vertex set and are labeled versions of the strong and weak orders of W respectively. Using a construction of Lusztig for quivers with an admissible automorphism, we define folded insertion for a Kac-Moody algebra and obt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006